Automorphic symmetry and AdS String novel integrable deformations

Anton Pribytok

Humboldt－Universität zu Berlin Institut für Mathematik und Institut für Physik
Steklov Mathematics Institute

Based on：
arXiv：2003．04332，PRL
arXiv：2010．11231，JPhys－A
arXiv：2011．08217，JHEP
arXiv：2109．00017，JHEP
arXiv：2112．10843，Springer
arXiv：2210．16348
РНФ
arXiv：2212，xxxxx

Outline

- Introduction: Automorphic symmetries as a tool for finding new integrable structures
- Quantum symmetries and the $\mathcal{B o o s t}$ in continuous systems
- Discrete integrability and symmetries
- The correct discrete \mathcal{B} counterpart
- Generalised bottom-up approach: R
- Implementation for lattice integrability with $\mathbb{V}=\mathbb{C}^{2}$ and $\mathbb{V}=\mathbb{C}^{4}$ local spaces (completeness)

Outline

- Automorphism in $A d S_{n}$ integrable backgrounds (General method)
- Novel integrable classes arising in string backgrounds: Spin chain picture of $6 \mathrm{vB} / 8 \mathrm{vB}$
- B-class integrable properties: $\mathfrak{B}^{\mathcal{X}}, \mathbb{C}_{A d S_{n}}$, Free fermion
- Further directions in $A d S_{3} \times S^{3} \times \mathcal{M}^{4}(A B A / T B A$, Excitations and more)

Introduction

Definition. Generically a dynamical system is integrable, when it possesses sufficient number of motion integrals and its dynamics can be described by $N<D$ dof, where D is the dimension of the underlying phase space.

Conventionally, it acquires three characteristics:

- saturating set of conservation laws
- algebraic invariants
- existence of explicit functional solution

Theorem [Liouville]. If the system is Liouville integrable then associated equations of motion are quadrature solvable.

Classically integrable

Apart from present conserved quantities, there also exist sufficient integrable constraints.

Provided some matrix algebra \mathfrak{g} along with Jacobi identity to hold on Poisson bracket, one can obtain a constraint on embedded element $\exists r_{12} \in \mathfrak{g} \otimes \mathfrak{g}$, Classical Yang-Baxter Equation

$$
\left[r_{12}, r_{13}\right]+\left[r_{12}, r_{23}\right]+\left[r_{13}, r_{23}\right]=\left\{\begin{array}{l}
0, \text { CYBE } \\
\mathcal{C}, \text { modified-CYBE }
\end{array} \quad r_{21}=\mathcal{P} r_{12}\right.
$$

r being a constant classical r-matrix. With mCYBE to play a central role in σ-model integrability.

Quantum Integrable System

The quantum integrability has analogous characteristics, i.e. quantum mechanical or quantum field theoretic systems contain sufficient number of motion integrals (predominantly infinite set) in one spatial dimension $([\mathfrak{Q}, \mathbb{H}]=0)$.
In particular such (1+1)-dimensional quantum models, lead to a very rich integrable structure equipped with variety of important physical properties, e.g. sine-Gordon

$$
\square \phi+m^{2} \sin \phi=0
$$

On the other hand field theories with interaction are accompanied with several shortcomings. As known, one of the central flaws, are singularities and one demands a regularisation scheme for it.

Discretisation

One way to regulate is to discretise the space or introduce a lattice.
That leads to a reduction of the field theoretic model in finite volume to a system with finite dof.

Such systems are qualified as magnetic chains of quantum spins, or Quantum Spin Chains.

Spin chains appear to be a wide universal class of quantum integrable models. Moreover there exist spatial continuous limits to the associated 2-dim QFTs

$$
\delta_{i j} / \Delta=\delta(x-y) \quad x=N \Delta
$$

with N spacings Δ, in the $\Delta \rightarrow 0, N \rightarrow \infty$ limit x becomes continuous variable.

From continuous setups it is known that a certain generating (conserved) observable, e.g. current $\mathcal{J}^{\mu}(x)$ possesses Lorentz transform

$$
\mathcal{U J}^{\mu}(x) \mathcal{U}^{-1}=\Lambda_{\nu}^{\mu} \mathcal{J}^{\nu}(\Lambda x)
$$

where $\mathcal{U}[\Lambda(u)]$ and Λ_{μ}^{ν} is Lorentz operator with fugacity u. In the limit one acquires the boost

$$
\mathcal{B}=\left.\mathrm{d}_{u} \Lambda(u)\right|_{u=0} \quad\left[\mathcal{B}, \mathcal{J}_{a}^{\mu}(x)\right]=\epsilon_{\alpha \beta} x^{\alpha} \partial^{\beta} \mathcal{J}_{a}^{\mu}(x)+\epsilon^{\mu \beta} \mathcal{J}_{a, \beta}^{\mu}
$$

for the local charge it follows

$$
\left[\mathcal{B}, Q_{a}\right]=0 \quad \text { with } \quad \mathcal{J}_{a}(\pm \infty) \equiv 0
$$

Can be shown

$$
e^{2 \pi i \mathcal{B}} \hat{Q}_{a} e^{-2 \pi i \mathcal{B}}=\hat{Q}_{a}-\frac{1}{2} \mathcal{C} Q_{a}
$$

\mathcal{C} is quadratic Casimir of some \mathfrak{g} in the adjoint representation $\left(-\delta_{a b} \mathcal{C}=f_{a c d} f_{c d b}\right)$.

So that one can see that conserved charges transform under \mathcal{B} as

$$
\left[\mathcal{B}, Q_{a}\right]=0 \quad\left[\mathcal{B}, \hat{Q}_{a}\right]=-\frac{\mathcal{C}}{4 \pi i} Q_{a}
$$

where nonvanishing second commutator is obviously a quantum effect. In fact the boost intertwines spacetime and internal symmetries, which indicates that quantised \mathcal{Y} manifests more than only an internal symmetry \rightarrow stronger constraining of the symmetry invariants.

Poincaré: $\quad\left[\mathcal{P}_{-}, \mathcal{P}_{+}\right]=0, \quad\left[\mathcal{B}, \mathcal{P}_{ \pm}\right]= \pm \mathcal{P}_{ \pm}$
Yangian supplement $\mathcal{Y}[\mathfrak{g}]: \quad \begin{cases}{\left[\mathcal{P}_{ \pm}, Q_{a}\right]=0} & {\left[\mathcal{P}_{ \pm}, \hat{Q}_{a}\right]=0} \\ {\left[\mathcal{B}, Q_{a}\right]=0} & {[\mathcal{B}, \hat{Q}]=-\mathfrak{C} \frac{\hbar}{4 \pi i} Q_{a}}\end{cases}$
where $\mathcal{P}_{ \pm}$are lightcone translations, ${ }^{(n)} Q_{a}$ is level- n Yangian generators. We can notice that the boost \mathcal{B} generates nontrivial internal symmetry extension [LeClair, Smirnov '91].

$$
\rho\left[\mathcal{B}_{\tilde{u}} \otimes \mathcal{B}_{\tilde{u}}\left(\Delta^{\mathrm{op}}(a)\right)\right] S(u-v)=S(u-v) \rho\left[\mathcal{B}_{\tilde{u}} \otimes \mathcal{B}_{\tilde{u}}(\Delta(a))\right]
$$

thus intertwining the Yangian evaluation modules.

Discretisation: ISC

An integrable spin chain can be characterised by the hierarchy of mutually commuting conserved quantities, e.g. charge operators $\mathbb{Q}_{2}, \mathbb{Q}_{3}, \mathbb{Q}_{4}$,
$\ldots \mathbb{Q}_{r}$, where r denotes interaction range.
One considers local vector space $(n=2 s+1) \mathfrak{H} \simeq \mathbb{C}^{n}$, then spin-s chain configuration space is given by the \boldsymbol{L}-fold tensor product

Important to address the boundaries of such quantum systems, since it can lead to very distinct physical description and properties. That could be seen from canonical Heisenberg integrable class.

Boundary Conditions

Distinct boundary conditions correspond to different types of integrable spin chains. $\partial \Sigma_{i}$ is a specific boundary and $V_{i} \in \mathbb{C}^{n}$ is n-dimensional local quantum space at site i.

One can classify 5 main boundary types for the spin chain

- Infinite spin chain: $-\infty \leftarrow \partial \Sigma_{1}, \partial \Sigma_{2} \rightarrow+\infty$
- Semi-infinite spin chain: $\partial \Sigma_{1}=V_{0}, \partial \Sigma_{2} \rightarrow+\infty$
- Open spin chain: $\partial \Sigma_{1}=V_{0}, \partial \Sigma_{2}=V_{L+1}$
- Closed spin chain: $(0) \rightarrow(L+1), \partial \Sigma_{1}=\partial \Sigma_{2}=V_{L+1}$
- Cyclic spin chain: $\partial \Sigma_{1}=\partial \Sigma_{2}=V_{L+1}$ along with shift symmetry $i \rightarrow i \pm 1$, where the total spin chain momentum of excitations $P=0$.

Integrable Spin Chain $\mathbb{V}=\mathbb{C}^{2}$

A quantum discrete system with nearest-neighbour (two-body) ferromagnetic interaction is described by the Hamiltonian (Heisenberg class)

$$
H=-\sum_{i=1}^{\tilde{L}}\left(J_{i}^{x} S_{i}^{x} S_{i+1}^{x}+J_{i}^{y} S_{i}^{y} S_{i+1}^{y}+J_{i}^{z} S_{i}^{z} S_{i+1}^{z}\right)+1 \text {-body-interactions }
$$

where J_{i}^{k} are real positive numbers at each site of the spin chain, S_{k} are spin operators. By considering various coupling $J_{x, y, z}$ interrelations one finds different spin chains ($X X, X Y, X X X, X X Z, X Y Z$ etc)

$$
\text { Shifts: } \mathbb{Q}_{1} \equiv P
$$

NN-interacting charge: $\mathbb{Q}_{2} \equiv H$

$$
H=\sum_{n=1}^{L} \mathcal{H}_{n, n+1} \quad H_{L, L+1} \equiv H_{L, 1}
$$

Closed Heisenberg Chain Class

QYBE

But now with a quantum integrable constraint

2-dim scattering factorisation in integrable systems

Hence sufficient condition is described by Quantum YBE [Yang-Yang '66, Baxter '72] [Drinfeld '85]

$$
R_{12}\left(z_{1}, z_{2}\right) R_{13}\left(z_{1}, z_{3}\right) R_{23}\left(z_{2}, z_{3}\right)=R_{23}\left(z_{2}, z_{3}\right) R_{13}\left(z_{1}, z_{3}\right) R_{12}\left(z_{1}, z_{2}\right)
$$

Quantum R-matrix: $R_{i j} \in \operatorname{End}(\mathbb{V} \otimes \mathbb{V} \otimes \mathbb{V})$

$$
R: \mathbb{V} \otimes \mathbb{V} \rightarrow \mathbb{V} \otimes \mathbb{V} \quad R_{12}(z, z)=P_{12}
$$

$$
R_{a b}(u, v) R_{a c}(u, w) R_{b c}(v, w)=R_{b c}(v, w) R_{a c}(u, w) R_{a b}(u, v)
$$

In particular, one can consider difference (or additive) spectral form QYBE

$$
R_{a b}(u, v) \rightarrow R_{a b}(u-v)
$$

in addition from R-monodromy one can establish

$$
\mathbb{Q}_{2}=\sum_{n=1}^{L} R_{n, n+1}^{-1}(0) \frac{d}{d u} R_{n, n+1} \equiv \sum_{n} \mathcal{Q}_{n, n+1}
$$

with \mathcal{Q} to denote local densities. In general we know that

$$
\mathbb{Q}_{r} \equiv \sum_{n} \mathcal{Q}_{n, n+1, \ldots, n+r-1}=-\left.\frac{i}{(r-1)!} \frac{\mathrm{d}^{r-1}}{\mathrm{~d} u^{r-1}} \log [t(u)]\right|_{u=\frac{i}{2}}
$$

however a method is required to construct all higher charges.

Emergence of Automorphic symmetry

One can note that it is useful to consider $R \mathcal{L} \mathcal{L}$ relation along the lines of QISM

$$
R_{12}(v) \mathcal{L}_{10}(u+v) \mathcal{L}_{20}(u)=\mathcal{L}_{20}(u) \mathcal{L}_{10}(u+v) R_{12}(v)
$$

By differential properties and multiplication of monodromic complements, one can obtain

$$
\begin{aligned}
& i \prod_{j=1}^{k-1} \mathcal{L}_{0, j}\left[\mathcal{L}_{0, k} \mathcal{L}_{0, k+1}, \mathcal{H}_{k, k+1}\right] \prod_{n=k+2}^{L} \mathcal{L}_{0, n}= \\
& \prod_{j=1}^{k-1} \mathcal{L}_{0, j} \mathcal{L}_{0, k} \mathcal{L}_{0, k+1}^{\prime} \prod_{n=k+2}^{L} \mathcal{L}_{0, n}-\prod_{j=1}^{k-1} \mathcal{L}_{0, j} \mathcal{L}_{0, k}^{\prime} \mathcal{L}_{0, k+1} \prod_{n=k+2}^{L} \mathcal{L}_{0, n}
\end{aligned}
$$

which after performing resummation and boundary limits

$$
i\left[\sum_{k=-\infty}^{+\infty} k \mathcal{H}_{k, k+1}, T(u)\right]=\mathrm{d}_{u} T(u)
$$

Automorphic condition

that would result in

$$
i[\mathcal{B}, t]=\dot{t}
$$

with $\dot{T} \equiv \mathrm{~d}_{u} T(u)$ and transfer matrix $t(u)$. It can be noted, that it constitutes nothing but a discrete form of the field theoretic boost symmetry with a discretisation scheme $\int x \mathrm{~d} x \mapsto \sum_{k} k$. One can straightforwardly identify the generating scheme

$$
\begin{gathered}
\mathcal{Q}_{2}=\mathcal{U}^{-1}[\mathcal{B}, \mathcal{U}] \\
\mathcal{Q}_{3}=\frac{i}{2}\left[\mathcal{U}^{-1}\left[\mathcal{B}, \mathcal{U} \mathcal{Q}_{2}\right]-\mathcal{Q}_{2} \mathcal{Q}_{2}\right]=\frac{i}{2}[\underbrace{\left(\mathcal{U}^{-1} \mathcal{B} \mathcal{U}-\mathcal{Q}_{2}\right)} \mathcal{Q}_{2}-\mathcal{Q}_{2} \mathcal{B}]=\frac{i}{2}\left[\mathcal{B}, \mathcal{Q}_{2}\right] \\
\mathcal{Q}_{4}=\frac{i}{3}\left[\mathcal{B}, \mathcal{Q}_{3}\right] \\
\ldots \\
\mathcal{Q}_{r+1}=\frac{i}{r}\left[\mathcal{B}, \mathcal{Q}_{r}\right]
\end{gathered}
$$

First and second order of the expansion, corresponding to the shift operator \mathcal{U} and product of the shift and Hamiltonian of the system

Boost automorphism

From field theoretic perspective, higher symmetries [Tetelman '82] are reflected not only at the level of the Poincaré algebra, but would also admit infinite dimensional extension of internal symmetries, where the boost $\mathcal{B}[\cdot]$ manifests its automorphic nature

$$
\mathcal{B}\left[\mathbb{Q}_{2}\right] \equiv \sum_{k=-\infty}^{\infty} k \mathcal{H}_{k, k+1} \quad \rightarrow \quad \mathbb{Q}_{r+1} \simeq\left[\mathcal{B}\left[\mathbb{Q}_{2}\right], \mathbb{Q}_{r}\right]
$$

Range n local charges \mathcal{Q}_{n}

Boost automorphism

Rigorously the boost operator is defined for infinite length chains. However analytic proof for $\left[\mathbb{Q}_{2}, \mathbb{Q}_{3}\right]=0$ sufficiency*, i.e. \forall levels of the integrable hierarchy not present. [Reshetikhin and Grabowski-Mathieu conjecture '95]

$$
C \circ \stackrel{\mathcal{Q}_{2}}{\circ} \stackrel{\mathcal{B}[\cdot]}{[\cdot, \cdot] \equiv 0} \circ \stackrel{\mathcal{Q}}{3}^{\circ} \circ \stackrel{\mathcal{B}[\cdot]}{[\cdot, \cdot] \equiv 0} 0 \stackrel{\mathcal{Q}_{r+1}}{0} \cdots \underset{r-1}{\circ} \underset{r}{\circ} \underset{r+1}{\circ} \xrightarrow[{[\cdot, \cdot] \equiv} 0]{\mathcal{B}[\cdot]}
$$

\mathcal{B} oost operator automorphically generates the conserved charge hierarchy.

The Boost automorphism on the conserved charges can be related to Drinfeld automorphism on \mathcal{Y}-algebra.

Ansatz for automorphism

In the case of \mathbb{C}^{2} local space with the 2×2 spin σ^{a} embedding

$$
\sigma_{n}^{a}=\mathbb{1} \otimes \ldots \underbrace{\otimes \sigma^{a} \otimes}_{\mathrm{n}} \cdots \otimes \mathbb{1}
$$

One can demand generic Hamiltonian ansatz

$$
\mathcal{Q}_{i j}=A_{a b} \sigma^{a} \otimes \sigma^{b}
$$

Resolution structure already emerges from the first commutator

$$
\begin{aligned}
{\left[\mathbb{Q}_{2}, \mathbb{Q}_{3}\right] } & =\sum_{m, n} \mathcal{A}_{a b} \mathcal{A}_{e f g}\left[\ldots \sigma_{m}^{a} \sigma_{m+1}^{b} \ldots, \ldots \sigma_{n}^{e} \sigma_{n+1}^{f} \sigma_{n+2}^{g} \ldots\right] \\
& \equiv \mathcal{C}_{\text {abef }} \sum_{m} \ldots \sigma_{m}^{a} \sigma_{m+1}^{b} \sigma_{m+2}^{e} \sigma_{m+3}^{f} \ldots
\end{aligned}
$$

and is hypothetically completely constraining. Generically $\left[\mathbb{Q}_{r}, \mathbb{Q}_{s}\right]$ commutator provides $\frac{1}{2}\left(3^{r+s-1}-1\right)$ polynomial equations of degree $r+s-2$.

To obtain generating solutions, reduction transformations must be applied to the full solution space

Transformations

- Choice of appropriate normalisation of \mathcal{H} and addition of $\mathfrak{C}_{i} \cdot \mathbb{1}$
- Local basis transform

$$
\tilde{\mathcal{Q}}_{\left\{i_{1} \ldots i_{L}\right\}}=\left(\bigotimes_{L} \mathcal{V}\right) \mathcal{Q}_{\left\{i_{1} \ldots i_{L}\right\}}\left(\bigotimes_{L} \mathcal{V}^{-1}\right)
$$

with unimodular \mathcal{V}.

- Set of discrete transforms

$R(u)$	\leftrightarrow	\mathcal{H}
$P R(u) P$	\leftrightarrow	$P \mathcal{H} P$
$R(u)^{T}$	\leftrightarrow	$P \mathcal{H}^{T} P$
$P R(u)^{T} P$	\leftrightarrow	\mathcal{H}^{T}

New classes: $\mathfrak{s l}_{2}$ deformed sector

One more new \mathcal{H} has the form

$$
\mathcal{H}_{6}=\left(\begin{array}{cccc}
a_{1} & a_{2} & a_{2} & 0 \\
0 & -a_{1} & 2 a_{1} & -a_{2} \\
0 & 2 a_{1} & -a_{1} & -a_{2} \\
0 & 0 & 0 & a_{1}
\end{array}\right)
$$

together with the unitary R matrix

$$
R_{6}(u)=\left(1-a_{1} u\right)\left(1+2 a_{1} u\right)\left(\begin{array}{cccc}
1 & \frac{a_{2} u}{} u & \frac{a_{2} u}{} a_{1} & -a_{2}^{2} u^{2}\left(2 a_{1} u+1\right) \\
0 & \frac{2 a_{1} u}{2 a_{1} u+1} & \frac{1}{2 a_{1} u+1} & -a_{2} u \\
0 & \frac{2 a_{1} u+1}{2 a_{1} u+1} & \frac{2}{2 a_{1} u+1} & -a_{2} u \\
0 & 0 & 0 & 1
\end{array}\right)
$$

The six new classes develop non-diagonalisability, some are nilpotent and some exhibit distinct eigenspectrum - associated conserved charges develop non-trivial Jordan blocks.

Physical? Relation to conformal fishchain in the continuum?
Temperley-Lieb or Hecke systems? Constitute higher-parametric deformations of Kulish-Stolin (deformed \mathcal{Y} [$\mathfrak{s l}_{2}$]) [Kulish, Stolin] [Alcaraz, Droz, Henkel, Rittenberg '93]

Graded space

We also extend our results to graded vector spaces $\mathbb{C}^{1 \mid 1}$

$$
\mathbb{V}=\mathbb{V}_{0} \oplus \mathbb{V}_{1} \quad \operatorname{dim} \mathbb{V}_{0}=m \quad \operatorname{dim} \mathbb{V}_{1}=n \quad\left\{\begin{array}{l}
g(i)=0,1 \leq i \leq m \\
g(i)=1, \text { with } m \leq i \leq m+n
\end{array}\right.
$$

with grading $g(i), i \in\{1, \ldots, m+n\}$. For bosofermionic setting one obtains $i=1,2$ for $\mathcal{C}^{1 \mid 1}$, although integrable case restricts to even sector.

The $R T T$ relation and graded ansatz constitute

$$
\begin{aligned}
& T_{a}(u) T_{b}(u)=R^{-1}(u-v) T_{a}(u) T_{b}(u) R(u-v) \quad S T r\left(\mathfrak{O}_{A} \mathfrak{O}_{B}\right)=(-1)^{\mathfrak{g}(A)+\mathfrak{g}(B)} \operatorname{STr}\left(\mathfrak{O}_{B} \mathfrak{O}_{A}\right) \\
& \left\{\begin{array}{l}
Q_{2}=\sum \mathcal{A}_{i j k l} E_{i j} \otimes_{g} E_{k l} \\
\mathcal{O}_{l} \mathcal{O}_{I I}=\bigotimes_{i=1}^{n} \mathfrak{e}_{l, i} \bigotimes_{j=1}^{n} \mathfrak{e}_{\|, j} \\
=\prod_{i=1}^{n-1}(-1)^{\left|\mathfrak{e}_{I, i}\right|} \sum_{j=i+1}^{n}\left|\mathfrak{e}_{l, j}\right| \\
\bigotimes_{k=1}^{n} \mathfrak{e}_{l, k} \mathfrak{e}_{\| l}, k
\end{array} \quad \rightarrow \quad\left(\begin{array}{llll}
A_{1111} & A_{1112} & A_{1211} & A_{1212} \\
A_{1121} & A_{1122} & A_{1221} & A_{1222} \\
A_{2111} & A_{2112} & A_{2211} & A_{2212} \\
A_{2121} & A_{2122} & A_{2221} & A_{2222}
\end{array}\right)\right.
\end{aligned}
$$

solution of YBE_{g} with $\epsilon_{i} \in\{-1,+1\}$ establishes bijection $\mathbb{C}^{1 \mid 1} \rightarrow \mathbb{C}^{2}$

$$
R(u)=\left(\begin{array}{cccc}
a_{1}(u) & 0 & 0 & \epsilon_{1} d_{1}(u) \\
0 & \epsilon_{2} b_{1}(u) & c_{1}(u) & 0 \\
0 & c_{2}(u) & \epsilon_{2} b_{2}(u) & 0 \\
-\epsilon_{1} d_{2}(u) & 0 & 0 & -a_{2}(u)
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
a_{1}(u) & 0 & 0 & d_{1}(u) \\
0 & b_{1}(u) & c_{1}(u) & 0 \\
0 & c_{2}(u) & b_{2}(u) & 0 \\
d_{2}(u) & 0 & 0 & a_{2}(u)
\end{array}\right)
$$

An alternative to Kulish-Sklyanin proof on graded QYBE bijection.

$\mathfrak{s u}(2) \times \mathfrak{s u}(2)$ Hubbard type models

Hubbard model

One can try to generalise the prescription to higher dimensions. A wide class of models lies in four-dimensional Hilbert space, where site can be either vacant, occupied by a single fermion with spin up or down, or by a pair of fermions, e.g. Hubbard model

$$
\mathbb{H}^{(H u b)}=\sum_{i} \sum_{\alpha=\uparrow, \downarrow}\left(\mathrm{c}_{\alpha, i}^{\dagger} \mathrm{c}_{\alpha, i+1}+\mathrm{c}_{\alpha, i+1}^{\dagger} \mathrm{c}_{\alpha, i}\right)+\mathfrak{u} \mathrm{n}_{\uparrow, i} \mathrm{n}_{\downarrow, i}
$$

- The kinetic part is a hopping term, which allows neighboring-site dynamics
- Potential term measures the number of fermionic pairs on each site (\mathfrak{u} sets the overall scale)

Hubbard Type Symmetry

1). We take models which have $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$ symmetry
2). Models whose kinetic part is given by $\mathbb{H}_{\text {kin }}^{\mathrm{Hub}}$.

The Hubbard model itself does not appear as one of the solutions, since its R-matrix has non-difference spectral dependence. [Shastry Class]

For Hubbard type models, one recovers spin chains with $\mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$, $\mathfrak{s u}(4), \mathfrak{s u}(2 \mid 2), \mathfrak{s p}(4)$ and $\mathfrak{s o (4)}$ symmetry algebras.

Additional Twist

In addition to integrable transforms, one now requires also a twist

$$
\left\{\begin{array}{l}
\tilde{R}_{\mathcal{V}, \mathcal{W}}=(\mathcal{V} \otimes \mathcal{W}) R(\mathcal{V} \otimes \mathcal{W})^{-1} \\
{[R, \mathcal{V} \otimes \mathcal{V}]=[R, \mathcal{W} \otimes \mathcal{W}]=0}
\end{array}\right.
$$

The two-particle representations for the Hubbard type Ansatz arise as pure or mixed pairs

2-particle modules

$\mathfrak{s u}(2) \times \mathfrak{s u}(2)$ invariant Hamiltonian takes the form

$$
\begin{aligned}
& \mathcal{H}\left|\phi_{a} \phi_{b}\right\rangle=A\left|\phi_{a} \phi_{b}\right\rangle+B\left|\phi_{b} \phi_{a}\right\rangle+C \epsilon_{a b} \epsilon^{\alpha \beta}\left|\psi_{\alpha} \psi_{\beta}\right\rangle \\
& \mathcal{H}\left|\phi_{a} \psi_{\beta}\right\rangle=G\left|\phi_{a} \psi_{\beta}\right\rangle+H\left|\psi_{\beta} \phi_{a}\right\rangle \\
& \mathcal{H}\left|\psi_{\alpha} \phi_{b}\right\rangle=K\left|\psi_{\alpha} \phi_{b}\right\rangle+L\left|\phi_{b} \psi_{\alpha}\right\rangle \\
& \mathcal{H}\left|\psi_{\alpha} \psi_{\beta}\right\rangle=D\left|\psi_{\alpha} \psi_{\beta}\right\rangle+E\left|\psi_{\beta} \psi_{\alpha}\right\rangle+F \epsilon^{a b} \epsilon_{\alpha \beta}\left|\phi_{a} \phi_{b}\right\rangle
\end{aligned}
$$

$\phi_{1,2}$ and $\psi_{1,2}$ span the two independent $\mathfrak{s u}(2)$ fundamental representations.

The most general two-site operator that commutes with both $\mathfrak{s u}(2)$ oscillator representations contains ten parameters

$$
\begin{aligned}
\mathcal{H}_{12}= & \sum_{\alpha \neq \beta}\left[\left(\mathrm{c}_{\alpha, 1}^{\dagger} \mathrm{c}_{\alpha, 2}+\mathrm{c}_{\alpha, 1} \mathrm{c}_{\alpha, 2}^{\dagger}\right)\left(C_{1}+C_{2}\left(\mathrm{n}_{\beta, 1}-\mathrm{n}_{\beta, 2}\right)^{2}\right)+\right. \\
& \left.\left(\mathrm{c}_{\alpha, 1}^{\dagger} \mathrm{c}_{\alpha, 2}-\mathrm{c}_{\alpha, 1} \mathrm{c}_{\alpha, 2}^{\dagger}\right)\left(C_{3}\left(\mathrm{n}_{\beta, 1}-\frac{1}{2}\right)+C_{4}\left(\mathrm{n}_{\beta, 2}-\frac{1}{2}\right)\right)\right] \\
+ & \left(\mathrm{c}_{\uparrow, 1}^{\dagger} \mathrm{c}_{\downarrow, 1}^{\dagger} \mathrm{c}_{\uparrow, 2} \mathrm{c}_{\downarrow, 2}+\mathrm{c}_{\uparrow, 1} \mathrm{c}_{\downarrow, 1} \mathrm{c}_{\uparrow, 2}^{\dagger} \mathrm{c}_{\downarrow, 2}^{\dagger}\right) C_{5}+\left(\mathrm{c}_{\uparrow, 1}^{\dagger} \mathrm{c}_{\downarrow, 1} \mathrm{c}_{\downarrow, 2}^{\dagger} \mathrm{c}_{\uparrow, 2}+\mathrm{c}_{\downarrow, 1}^{\dagger} \mathrm{c}_{\uparrow, 1,1} \mathrm{c}_{\uparrow, 2}^{\dagger} \mathrm{c}_{\downarrow, 2}\right) C_{6} \\
+ & C_{7}\left(\mathrm{n}_{\uparrow, 1}-\frac{1}{2}\right)\left(\mathrm{n}_{\downarrow, 1}-\frac{1}{2}\right)+C_{8}\left(\mathrm{n}_{\uparrow, 2}-\frac{1}{2}\right)\left(\mathrm{n}_{\downarrow, 2}-\frac{1}{2}\right) \\
+ & C_{9}\left(\mathrm{n}_{\uparrow, 1}-\mathrm{n}_{\downarrow, 1}\right)^{2}\left(\mathrm{n}_{\uparrow, 2}-\mathrm{n}_{\downarrow, 2}\right)^{2}+ \\
+ & \left(C_{5}-C_{6}\right)\left(\mathrm{n}_{\uparrow, 1} \mathrm{n}_{\downarrow, 1}+\mathrm{n}_{\uparrow, 2} \mathrm{n}_{\downarrow, 2}-1\right)\left(\mathrm{n}_{\uparrow, 1}-\mathrm{n}_{\uparrow, 2}\right)\left(\mathrm{n}_{\downarrow, 1}-\mathrm{n}_{\downarrow, 2}\right) \\
+ & \frac{1}{2} C_{5}\left(\left(\mathrm{n}_{\uparrow, 1}-\mathrm{n}_{\downarrow, 2}\right)^{2}+\left(\mathrm{n}_{\downarrow, 1}-\mathrm{n}_{\uparrow, 2}\right)^{2}\right)+C_{0}, \\
C_{0}= & \frac{1}{2}(B+G+K), C_{1}=\frac{1}{2}(L-H), C_{2}=\frac{1}{2}(C-F+H-L), \\
C_{3}= & \frac{1}{2}(H+L-C-F), C_{4}=\frac{1}{2}(C+F+H+L), C_{5}=-B, C_{6}=E \\
C_{7}= & 2 A+B-2 K, C_{8}=2 A+B-2 G, C_{9}=A+B+D+E-G-K .
\end{aligned}
$$

Solution classes

Model	A	B	C	D	E	F	G	H	K	L
I	ρ	- ρ	0	0	0	0	a	$\rho e^{-\phi}$	$2 \rho-a$	ρe^{ϕ}
II	0	0	0	ρ	ρ	0	a	$\rho e^{-\phi}$	$2 \rho-a$	ρe^{ϕ}
III	ρ	$-\rho$	$\rho e^{-\phi}$	- ρ	ρ	$-\rho e^{\phi}$	0	0	0	0
IV	ρ	$-\rho$	$\rho e^{-\phi}$	ρ	$-\rho$	ρe^{ϕ}	0	0	0	0
V	$\frac{7}{4} \rho$	- ρ	$\frac{1}{2} \rho e^{-\phi}$	$\frac{7}{4} \rho$	- ρ	$\frac{1}{2} \rho e^{\phi}$	0	0	0	0
VI	0	0	0	a	0	0	b	0	c	0
VII	0	0	0	0	0	0	a	b	c	d
VIII	0	0	0	$a+c$	0	0	a	b	c	d
IX	ρ	$-\rho$	0	ρ	$-\rho$	0	a	$\rho e^{-\phi}$	$2 \rho-a$	ρe^{ϕ}
X	ρ	$-\rho$	0	ρ	ρ	0	a	$\rho e^{-\phi}$	$2 \rho-a$	ρe^{ϕ}
XI	ρ	- ρ	$\frac{1}{2} \rho e^{-\phi}$	ρ	$-\rho$	$\frac{1}{2} \rho e^{\phi}$	$\frac{3}{2} \rho$	$-\frac{3}{2} \rho$	$\frac{3}{2} \rho$	$-\frac{3}{2} \rho$
XII	0	0	$-\rho e^{-\phi}$	0	0	ρe^{ϕ}	0	ρ	0	$-\rho$

Table: Hubbard type \mathcal{H}-generators in the non-graded sector

Generalized Hubbard model

Hubbard prescription can be straightforwardly extended to include additional (integrable) interactions or potential deformations

$$
\begin{aligned}
& \mathcal{K}_{H u b}=\sum_{\alpha=\uparrow, \downarrow}\left(c_{\alpha, 1}^{\dagger} c_{\alpha, 2}+c_{\alpha, 2}^{\dagger} c_{\alpha, 1}\right) \quad \mathcal{H}=\mathcal{K}_{H u b}+\mathcal{K}_{p a i r}+\mathcal{K}_{\text {flip }}+V \\
& \mathcal{K}_{p a i r}= A_{1} c_{\uparrow, 1}^{\dagger} c_{\downarrow, 1}^{\dagger} c_{\uparrow, 2} c_{\downarrow, 2}+A_{2} c_{\uparrow, 2}^{\dagger} c_{\downarrow, 2}^{\dagger} c_{\uparrow, 1} c_{\downarrow, 1} \\
& \mathcal{K}_{\text {flip }}=A_{3} c_{\uparrow, 1}^{\dagger} c_{\downarrow, 2}^{\dagger} c_{\downarrow, 1} c_{\uparrow, 2}+A_{4} c_{\downarrow, 1}^{\dagger} c_{\uparrow, 2}^{\dagger} c_{\uparrow, 1} c_{\downarrow, 2}+A_{5} c_{\uparrow, 1}^{\dagger} c_{\uparrow, 2}^{\dagger} c_{\downarrow, 1} c_{\downarrow, 2} \\
&+A_{6} c_{\downarrow, 1}^{\dagger} c_{\downarrow, 2}^{\dagger} c_{\uparrow, 1} c_{\uparrow, 2} \\
& V= B_{1}+B_{2} n_{\uparrow, 1}+B_{3} n_{\downarrow, 1}+B_{4} n_{\uparrow, 1} n_{\downarrow, 1}+ \\
& B_{5} n_{\uparrow, 2}+B_{6} n_{\uparrow, 1} n_{\uparrow, 2}+B_{7} n_{\downarrow, 1} n_{\uparrow, 2}+B_{8} n_{\uparrow, 1} n_{\downarrow, 1} n_{\uparrow, 2}+ \\
& B_{9} n_{\downarrow, 2}+B_{10} n_{\uparrow, 1} n_{\downarrow, 2}+B_{11} n_{\downarrow, 1} n_{\downarrow, 2}+B_{12} n_{\uparrow, 1} n_{\downarrow, 1} n_{\downarrow, 2}+ \\
& B_{13} n_{\uparrow, 2} n_{\downarrow, 2}+B_{14} n_{\uparrow, 1} n_{\uparrow, 2} n_{\downarrow, 2}+B_{15} n_{\downarrow, 1} n_{\uparrow, 2} n_{\downarrow, 2}+B_{16} n_{\uparrow, 1} n_{\downarrow, 1} n_{\uparrow, 2} n_{\downarrow, 2}
\end{aligned}
$$

Integrable solutions in 4-dim

Applying boost procedure, one can find four integrable models

$$
\begin{aligned}
& \mathcal{H}^{(15)}=\mathcal{K}_{H u b}+a_{1}\left(n_{\uparrow, 1}-n_{\uparrow, 2}\right)^{2}+a_{2}\left(n_{\uparrow, 1}-n_{\uparrow, 2}\right)+a_{3}\left(n_{\downarrow, 1}-n_{\downarrow, 2}\right)^{2}+a_{4}\left(n_{\downarrow, 1}-n_{\downarrow, 2}\right) \\
& \mathcal{H}^{(16)}=\mathcal{K}_{H u b}+a_{1}\left(n_{\uparrow, 1}-n_{\uparrow, 2}\right)^{2}+a_{2}\left(n_{\uparrow, 1}-n_{\uparrow, 2}\right)+a_{3}\left(n_{\downarrow, 1}+n_{\downarrow, 2}\right)+a_{4}\left(n_{\downarrow, 1}-n_{\downarrow, 2}\right) \\
& \mathcal{H}^{(17)}=\mathcal{K}_{H u b}+a_{1}\left(n_{\uparrow, 1}+n_{\uparrow, 2}\right)+a_{2}\left(n_{\uparrow, 1}-n_{\uparrow, 2}\right)+a_{3}\left(n_{\downarrow, 1}+n_{\downarrow, 2}\right)+a_{4}\left(n_{\downarrow, 1}-n_{\downarrow, 2}\right)
\end{aligned}
$$

There are no models with $\mathcal{K}_{\text {pair }} \neq 0$. A model with non-trivial spin flip and potential part

$$
\begin{aligned}
\mathcal{H}^{(18)}= & \mathcal{K}_{H u b}+a\left(c_{\uparrow, 1}^{\dagger} c_{\downarrow, 2}^{\dagger} c_{\downarrow, 1} c_{\uparrow, 2}+c_{\downarrow, 1}^{\dagger} c_{\uparrow, 2}^{\dagger} c_{\uparrow, 1} c_{\downarrow, 2}+c_{\uparrow, 1}^{\dagger} c_{\uparrow, 2}^{\dagger} c_{\downarrow, 1} c_{\downarrow, 2}+c_{\downarrow, 1}^{\dagger} c_{\downarrow, 2}^{\dagger} c_{\uparrow, 1} c_{\uparrow, 2}\right) \\
& +(2 a-b)\left(n_{\uparrow, 1}+n_{\downarrow, 1}\right)+b\left(n_{\uparrow, 2}+n_{\downarrow, 2}\right)-a\left(n_{\uparrow, 1}+n_{\downarrow, 1}\right)\left(n_{\uparrow, 2}+n_{\downarrow, 2}\right)
\end{aligned}
$$

this model does not preserve spin orientation and is specific type of $X Y Z$ deformation of the Hubbard potential.

Complete YBE solution space

- Complete set of integrable \mathbb{C}^{2}-models found (*-magnets, Heisenberg, multivertex models)
- Novel multiparametric $\mathfrak{s l}_{2}$ sector, with associated deformed $\mathcal{Y}\left(\mathfrak{s l}_{2}\right)$ [de Leeuw, AP, Ryan '19], which includes 4 nontrivial families with up to 5 parameters.
- In the \mathbb{C}^{4} space we have found new models, that exhibit fermion pair formation and generalised Hubbard type models with most generic potential that are integrable [de Leeuw, AP, Retore, Ryan '19].
(BA not applicable, a Quantum Spectral Curve for the latter is in progress).

AdS/CFT Integrability

In particular AdS/CFT integrability implies agreement of global symmetries on both sides of the correspondence, e.g. $\mathcal{N}=4$ superconformal symmetry and $A d S_{5} \times S^{5}$ superspace isometries are described by covering supergroup $\widetilde{\operatorname{PSU}}(2,2 \mid 4)$. It is based on $\mathfrak{p s u}(2,2 \mid 4)$ Lie superalgebra of dimension $30 \mid 32$ (even| odd).

Having 4|4-C supermatrices
$\mathfrak{M}=\left(\begin{array}{l|l}A & B \\ \hline C & D\end{array}\right) \quad A, D$ even and B, C odd $4 \times 4 \mathbb{C}$-blocks (NonGraßmann)
with Lie bracket being graded supermatrix commutator $[\cdot, \cdot\}$
$[\mathfrak{M}, \mathfrak{R}\}=\mathfrak{M} \mathfrak{R}-(-1)^{\mathfrak{M} \mathfrak{R}} \mathfrak{R M} \quad S \operatorname{Tr} \mathfrak{M}=\operatorname{Tr} A-\operatorname{Tr} D \quad S \operatorname{Tr}[\mathfrak{M}, \mathfrak{R}\}=0$
$(-1)^{\mathfrak{M T}}[[\mathfrak{M}, \mathfrak{R}\}, \mathfrak{T}\}+(-1)^{\mathfrak{M M}}[[\mathfrak{R}, \mathfrak{T}\}, \mathfrak{M}\}+(-1)^{\mathfrak{T} \mathfrak{R}}[[\mathfrak{T}, \mathfrak{M}\}, \mathfrak{R}\}=0$
By appropriate supertrace restriction and centre projection 30|32-dim $\mathfrak{p s l}(4 \mid 4, \mathbb{C})$ is obtained from $\mathfrak{g l}(4 \mid 4, \mathbb{C})$

Sigma models on coset superspaces

S^{3} sigma model as $S U(2)$ PCM

$$
S=-\frac{1}{2} \int d^{2} x \operatorname{Tr}\left[\mathcal{J}_{+}, \mathcal{J}_{-}\right] \quad \mathcal{J}=g^{-1} d g \in \mathfrak{s u}(2)
$$

which under extensions could be generalised to supercoset model

$$
\frac{\hat{\mathfrak{F}}}{\mathfrak{f}}=\frac{\hat{G} \times \hat{G}}{\mathfrak{f}} \quad S_{M T}=\int d^{2} \times \mathrm{S} \operatorname{Tr}\left[\left(\mathcal{P}_{+} \mathcal{J}_{+}\right) \mathcal{J}_{-}\right] \text {[Metsaev, Tseytlin '98] }
$$

with bosonic diagonal subgroup \mathfrak{f} of factorised supergroup $\hat{\mathfrak{F}}=\hat{G} \times \hat{G}$
$A d S_{n} \times S^{n}=\hat{G} / H$ supercosets, with superisometry \hat{G} include:

$$
\begin{array}{lll}
A d S_{5} \times S^{5} & \longrightarrow & \frac{P S U(2,2 \mid 4)}{S O(1,4) \times S O(5)} \\
& & \longrightarrow
\end{array} \begin{aligned}
& \frac{P S U(1,1 \mid 2) \times P S U(1,1 \mid 2)}{S O(1,2) \times S O(3)} \\
&
\end{aligned} \quad \begin{array}{lll}
& & \\
& & \\
& & \frac{P S U(1,1 \mid 2)}{S O(1,1) \times S O(2)}
\end{array}
$$

Automorphic non-difference integrability

Quantum integrability consistency

$$
R_{12}(u, v) R_{13}(u, w) R_{23}(v, w)=R_{23}(v, w) R_{13}(u, w) R_{12}(u, v)
$$

where $R_{i j}\left(x_{i}, y_{j}\right) \neq R_{i j}\left(x_{i}-y_{j}\right)$, with transfer matrix provided accordingly

$$
\mathcal{T}(u, \theta)=\operatorname{tr}_{0}\left[R_{0 L}\left(0, \theta_{L}\right) \ldots R_{01}\left(0, \theta_{1}\right)\right]
$$

In present setting one can restrict to space with regular R and homogeneous limit of NN-spin-chain

$$
\mathbb{Q}_{2}(\theta)=\sum_{k} \mathcal{H}_{k, k+1} \quad \mathcal{H}(\theta)=\left.P \frac{d R(u, \theta)}{d u}\right|_{u \rightarrow \theta} \quad R_{i j}(u, u)=P_{i j}
$$

Generically one can generate integrable hierarchy of commuting charges

$$
\left.\mathbb{Q}_{r+1} \simeq \frac{d^{r} \log [\mathcal{T}(u, \theta)]}{d u^{r}}\right|_{u \rightarrow \theta} \quad\left[\mathbb{Q}_{r}, \mathbb{Q}_{s}\right]=0
$$

Automorphic non-difference integrability

As first step, in the present setting it is possible to find generalised (extended) solution space from the commuting tower \mathbb{Q}_{r}, that will define set of algebraic constraints. It possible to proceed with transfer derivatives and use $R \mathcal{T} \mathcal{T}$-algebra, but instead it could accomplished by the generating automorphism

Generalised $\mathcal{B o o s t}$

$$
\begin{aligned}
\mathcal{B}\left[\mathbb{Q}_{2}\right]= & \sum_{k=-\infty}^{+\infty} k \mathcal{H}_{k, k+1}(\theta)+\partial_{\theta} \quad \mathbb{Q}_{r+1}=\left[\mathcal{B}\left[\mathbb{Q}_{2}\right], \mathbb{Q}_{r}\right] \quad r>1 \\
& {\left[\mathbb{Q}_{r+1}, \mathbb{Q}_{2}\right] \Rightarrow\left[\left[\mathcal{B}\left[\mathbb{Q}_{2}\right], \mathbb{Q}_{r}\right], \mathbb{Q}_{2}\right]+\left[d_{\theta} \mathbb{Q}_{r}, \mathbb{Q}_{2}\right]=0 }
\end{aligned}
$$

from here follows first order nonlinear ODE coupled system.
R - and S-matrices arising in string integrable backgrounds possess arbitrary spectral dependence. Is there a technique to find the underlying R-matrix?

Constructing the R-matrix

Constraints

To obtain R-matrix, one can expand YBE to first order and associate spectral parameters, which will result in coupled differential system for R

$$
\begin{cases}{\left[R_{13} R_{23}, \mathcal{H}_{12}(u)\right]=\left(\partial_{u} R_{13}\right) R_{23}-R_{13}\left(\partial_{u} R_{23}\right)} & u_{1}=u_{2} \equiv u \\ {\left[R_{13} R_{12}, \mathcal{H}_{23}(v)\right]=\left(\partial_{v} R_{13}\right) R_{12}-R_{13}\left(\partial_{v} R_{12}\right)} & u_{2}=u_{3} \equiv v\end{cases}
$$

with $R_{i j}=R_{i j}(u, v)$ and equations are reduction from Sutherland equation.

Symmetries

- Norm and shift
- Reparameterised: $R(f(u), \mathfrak{f}(v))$ satisfies YBE
- Local Basis Transform:

$$
R^{\mathcal{V}}(u, v)=[\mathcal{V}(u) \otimes \mathcal{V}(v)] R(u, v)[\mathcal{V}(u) \otimes \mathcal{V}(v)]^{-1}
$$

- Discrete Transform: PRP, R^{T} and $P R^{T} P$ satisfy YBE from R.
- Twisted sector: for any two \mathfrak{T}_{1} and \mathfrak{T}_{2} with R-symmetries

$$
\left[\mathfrak{T}_{1,2} \otimes \mathfrak{T}_{1,2}, R\right]=0, \text { then }\left[\mathfrak{T}_{1}(u) \otimes \mathfrak{T}_{2}(v)\right] R\left[\mathfrak{T}_{2}(u) \otimes \mathfrak{T}_{1}(v)\right]^{-1}
$$

Gauge/Gravity Integrability

- $A d S_{3} /$ CFT $_{2}$ defines $\boldsymbol{A d S}_{3} \times \boldsymbol{S}^{3} \times \boldsymbol{\mathcal { M }}^{4}$ under two geometries that preserve 16 supercharges
$\left\{\begin{array}{l}\mathcal{M}^{4}=T^{4}, \text { with } \mathfrak{p s u}(1,1 \mid 2)^{2} \\ \mathcal{M}^{4}=S^{3} \times S^{1}, \text { with } \mathfrak{d}(2,1 ; \alpha)^{2} \sim \mathfrak{d}(2,1 ; \alpha)_{L} \oplus \mathfrak{d}(2,1 ; \alpha)_{R} \oplus \mathfrak{u}(1)\end{array}\right.$ where α relates radii of the spheres.
- For $\boldsymbol{A d S} \boldsymbol{S}_{2} \times \boldsymbol{S}^{2} \times \boldsymbol{T}^{6}, \mathfrak{p s u}(1,1 \mid 2) \ni \mathbb{Z}_{4}$ automorphism, but no gauge choice for κ-symmetry

$A d S_{2,3}$ embedding

- For R-matrix of the $A d S_{2,3}$ consisting of different chirality 4×4 blocks, that satisfy qYBE.
- We find novel deformed Hamiltonians of $A d S_{3} \times S^{3} \times \mathcal{M}^{4}$ and $A d S_{2} \times S^{2} \times T^{6}$ type.
- $A d S_{3}$ admits either continuous family of deformations (spectral functional shifts) if mapped to $\mathbf{6}$-vB or single-parameter elliptic deformation if mapped to $8-\mathrm{vB}$.
- On the other hand, massive $A d S_{2} \times S^{2} \times T^{6}$ is of 8 -vB type and admits single-parameter deformation.

8v-A-B Classes

$$
R^{8 v A}(z)=\left(\begin{array}{cccc}
\operatorname{sn}(\eta+z) & 0 & 0 & k \operatorname{sn}(\eta) \operatorname{sn}(z) \operatorname{sn}(\eta+z) \\
0 & \operatorname{sn}(z) & \operatorname{sn}(\eta) & 0 \\
0 & \operatorname{sn}(\eta) & \operatorname{sn}(z) & 0 \\
k \operatorname{sn}(\eta) \operatorname{sn}(z) \operatorname{sn}(\eta+z) & 0 & 0 & \operatorname{sn}(\eta+z)
\end{array}\right)
$$

8-vertex B class

$$
\begin{aligned}
& r_{1}=\Sigma(u, v)\left[\sin \eta_{+} \frac{\mathrm{cn}}{\mathrm{dn}}-\cos \eta_{+} \mathrm{sn}\right] \\
& r_{2}=-\Sigma(u, v)\left[\cos \eta_{-} \mathrm{sn}+\sin \eta_{-} \frac{\mathrm{cn}}{\mathrm{dn}}\right] \\
& r_{3}=-\Sigma(u, v)\left[\cos \eta_{-} \mathrm{sn}-\sin \eta_{-} \frac{\mathrm{cn}}{\mathrm{dn}}\right] \\
& r_{4}=\Sigma(u, v)\left[\sin \eta_{+} \frac{\mathrm{cn}}{\mathrm{dn}}+\cos \eta_{+} \mathrm{sn}\right] \\
& r_{5}=r_{6}=1, \quad r_{7}=r_{8}=k \operatorname{sn} \frac{\mathrm{cn}}{\mathrm{dn}}
\end{aligned}
$$

with elliptic functions to be $\mathrm{xn}=\mathrm{xn}\left(u-v, k^{2}\right), \Sigma(u, v)=[\sin \eta(u) \sin \eta(v)]^{-\frac{1}{2}}$, $\eta_{ \pm} \equiv \frac{\eta(u)-\eta(v)}{2}$ for arbitrary function $\eta(u)$ and constant k.

The four block implementation will result in the R operator of the form

$$
\left(\begin{array}{cccccccccccccccc}
r_{1}^{\mathrm{LL}} & 0 & 0 & 0 & 0 & r_{8}^{\mathrm{LL}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & r_{2}^{\mathrm{LL}} & 0 & 0 & r_{6}^{\mathrm{LL}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{1}^{\mathrm{LR}} & 0 & 0 & 0 & 0 & r_{8}^{\mathrm{LR}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r_{2}^{\mathrm{LR}} & 0 & 0 & r_{6}^{\mathrm{LR}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & r_{5}^{\mathrm{LL}} & 0 & 0 & r_{3}^{\mathrm{LL}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
r_{7}^{\mathrm{LL}} & 0 & 0 & 0 & 0 & r_{4}^{\mathrm{LL}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & r_{5}^{L R} & 0 & 0 & r_{3}^{\mathrm{LR}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & r_{7}^{\mathrm{LR}} & 0 & 0 & 0 & 0 & r_{4}^{L R} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{1}^{R L} & 0 & 0 & 0 & 0 & r_{8}^{R L} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}^{\mathrm{RL}} & 0 & 0 & r_{6}^{\mathrm{RL}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{1}^{\mathrm{RR}} & 0 & 0 & 0 & 0 & r_{8}^{\mathrm{RR}} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{2}^{R R} & 0 & 0 & r_{6}^{R R} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{5}^{R L} & 0 & 0 & r_{3}^{R L} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{7}^{R L} & 0 & 0 & 0 & 0 & r_{4}^{R L} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{5}^{\mathrm{RR}} & 0 & 0 & r_{3}^{\mathrm{RR}} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & r_{7}^{\mathrm{RR}} & 0 & 0 & 0 & 0 & r_{4}^{\mathrm{RR}}
\end{array}\right)
$$

where $r_{k}^{\mathcal{X}} \equiv r_{k}^{\mathcal{X}}(u, v), \mathcal{X} \in\{\mathrm{LL}, \mathrm{RR}, \mathrm{LR}, \mathrm{RL}\}$ and R will correspond to the full $16 \times 16 R$-matrix (if not stated otherwise).

Structure and Properties: $\operatorname{AdS} S_{\{2,3\}}$ deformed Limits

Reductions

- Important that $A d S_{3} \times S^{3} \times S^{3} \times S^{1}$ can be obtained from 6-vertex B (trigonometric) by appropriate parametric identification in Zhukovsky space (one can build $\operatorname{AdS}_{3} \times S^{3} \times T^{4} R$ - $/ S$-matrix from $A d S_{3} \times S^{3} \times S^{3} \times S^{1}$ with $\alpha \rightarrow\{0,1\}$ limits).
- As well as 8 -vertex model B (elliptic), which is a deformation of $A d S_{2} \times S^{2} \times T^{6}$.
- Moreover two-parameter q-deformed R-matrix that underlies double deformed σ-model can be embedded into 6 vB model.

$A d S_{3}$ 2-parameter deformation

It is possible to construct two-parameter deformation of $\operatorname{AdS}_{3} \times S^{3} \times \mathcal{M}^{4}$ backgrounds, by deforming each copy of the factorised supergroup

$$
\begin{aligned}
S & =\int d^{2} \times \operatorname{STr}\left[\mathcal{J}_{+}\left(\mathcal{P}_{-}^{\eta_{L, R}} \frac{1}{1-I_{\eta_{L, R}} R_{f} \mathcal{P}_{-}^{\eta_{L, R}}} \mathcal{J}_{-}\right)\right] \quad[\text { Hoare '14] } \\
R_{f} & =\operatorname{Ad}_{f}^{-1} R \operatorname{Ad}_{f} \quad I_{\eta_{L, R}}=\frac{2}{\sqrt{\left(1-\eta_{L}^{2}\right)\left(1-\eta_{R}^{2}\right)}}\left(\begin{array}{cc}
\eta_{L} \mathbb{1} & 0 \\
0 & \eta_{R} \mathbb{1}
\end{array}\right) \\
\mathcal{P}_{ \pm}^{\eta_{L, R}} & =P_{2} \mp \frac{\sqrt{\left(1-\eta_{L}^{2}\right)\left(1-\eta_{R}^{2}\right)}}{2}\left(\mathcal{P}_{1}-\mathcal{P}_{3}\right)
\end{aligned}
$$

with single-parameter $\eta_{L, R}=\eta$ and undeformed $\eta_{L, R} \rightarrow 0$ case. The fundamental R-matrix defined on $\mathcal{U}_{q}\left(\mathfrak{u}(1) \in \mathfrak{p s u}(1 \mid 1)^{2} \ltimes \mathfrak{u}(1) \ltimes \mathbb{R}^{3}\right)$ is entirely fixed by co-commutativity with the coproduct

$$
\Delta^{O P}(\mathfrak{J}) R=R \Delta(\mathfrak{J}) \quad \Delta^{O P}(\mathfrak{J})=\mathcal{P} \Delta(\mathfrak{J})
$$

Double q-deformed algebra and representations

$$
\begin{array}{ll}
{\left[\mathfrak{B}, \mathfrak{O}_{ \pm}\right]= \pm 2 \mathfrak{\mathfrak { O } _ { \pm }}} & {\left[\mathfrak{B}, \mathfrak{S}_{ \pm}\right]= \pm 2 i \mathfrak{S}_{ \pm}} \\
\left\{\mathfrak{O}_{+}, \mathfrak{S}_{-}\right\}=\mathfrak{C}+\mathfrak{M}=\mathfrak{C}_{L} & \left\{\mathfrak{O}_{-}, \mathfrak{S}_{+}\right\}=\mathfrak{C}-\mathfrak{M}=\mathfrak{C}_{R} \\
\left\{\mathfrak{O}_{+}, \mathfrak{O}_{-}\right\}=\mathfrak{P} & \left\{\mathfrak{S}_{+}, \mathfrak{S}_{-}\right\}=\mathfrak{K}
\end{array}
$$

with \mathfrak{B} an automorphism of $\mathfrak{u}(1)$, supercharges $\mathfrak{O}_{ \pm}, \mathfrak{S}_{ \pm}$, and central elements $\mathfrak{M}, \mathfrak{C}, \mathfrak{P}, \mathfrak{K}$. For that one to deform central elements of the superalgebras separately:

$$
\left\{\mathfrak{O}_{\alpha}, \mathfrak{S}_{\beta}\right\}=\left[\mathfrak{C}_{l}\right]_{q_{l}}=\frac{\mathfrak{V}_{l}-\mathfrak{V}_{l}^{-1}}{q_{l}-q_{l}^{-1}}, \mathfrak{V}_{l}=q_{l}^{\mathfrak{C}_{l}} \quad \alpha= \pm, \beta=\mp, I=L / R
$$

Corproduct structure is defined through generator action on tensor product representations

$$
\begin{array}{ll}
\Delta\left(\mathfrak{O}_{+}\right)=\mathfrak{O}_{+} \otimes \mathbb{1}+\mathfrak{U} \mathfrak{V}_{L} \otimes \mathfrak{O}_{+} & \Delta\left(\mathfrak{O}_{-}\right)=\mathfrak{O}_{-} \otimes \mathbb{1}+\mathfrak{U V}_{R} \otimes \mathfrak{V}_{-} \\
\Delta\left(\mathfrak{S}_{+}\right)=\mathfrak{S}_{ \pm} \otimes \mathfrak{V}_{R}^{-1}+\mathfrak{U}^{-1} \otimes \mathfrak{S}_{ \pm} & \Delta\left(\mathfrak{S}_{-}\right)=\mathfrak{S}_{ \pm} \otimes \mathfrak{V}_{L}^{-1}+\mathfrak{U}^{-1} \otimes \mathfrak{S}_{ \pm} \\
\Delta(\mathfrak{P})=\mathfrak{P} \otimes \mathbb{1}+\mathfrak{U}^{2} \mathfrak{V}_{L} \mathfrak{V}_{R} \otimes \mathfrak{P} & \Delta(\mathfrak{K})=\mathfrak{K} \otimes \mathfrak{V}_{L}^{-1} \mathfrak{V}_{R}^{-1}+\mathfrak{U}^{-2} \otimes \mathfrak{K}
\end{array}
$$

Free Fermion Condition

Classes

These two classes could identified by the R algebraic condition

$$
\frac{\left[r_{1} r_{4}+r_{2} r_{3}-\left(r_{5} r_{6}+r_{7} r_{8}\right)\right]^{2}}{r_{1} r_{2} r_{3} r_{4}}=\mathfrak{c}_{\mathrm{B}}
$$

where $\mathfrak{c}_{\mathrm{B}}$ constitutes a characteristic Baxter constant with

$$
\begin{cases}\mathfrak{c}_{\mathrm{B}}=0, \text { Free Fermion constraint } & {[B]} \\ \mathfrak{c}_{\mathrm{B}} \neq 0, \text { Baxter constraint } & {[A]}\end{cases}
$$

For $A d S_{3}$ with RR, the massless R-matrix is described by nested BA, where pseudovacuum consisting of $|\phi\rangle$ is level-one pseudovacuum and not the corresponding BMN vacuum of all $|Z\rangle$ [Ohlsson Sax et. al. '12], so that for the transfer matrix

$$
\begin{equation*}
t_{N}=\operatorname{str}_{0} R_{01}\left(\theta_{0}-\theta_{1}\right) \ldots R_{0 N}\left(\theta_{0}-\theta_{N}\right) \tag{1}
\end{equation*}
$$

FF: Pure RR flux

For $A d S_{3}$ with pure Ramond-Ramond, the massless R-matrix is described by nested BA, where pseudovacuum consisting of $|\phi\rangle$ is level-one pseudovacuum and not the corresponding BMN vacuum of all $|Z\rangle$ [Ohlsson Sax et. al. '12], so that for the transfer matrix

$$
\begin{gathered}
t_{N}=\operatorname{str}_{0} R_{01}\left(\theta_{0}-\theta_{1}\right) \ldots R_{0 N}\left(\theta_{0}-\theta_{N}\right) \\
t_{2}=\frac{1-b_{01} b_{02}}{a_{01} a_{02}}\left(m_{1} m_{2}-n_{1} n_{2}\right)+\frac{b_{01}-b_{02}}{a_{01} a_{02}}\left(m_{1} n_{2}-n_{1} m_{2}\right)+c_{1}^{\dagger} c_{2}-c_{1} c_{2}^{\dagger} \\
\\
=\frac{1}{a_{12}} \mathbb{1}-e^{-\frac{\theta_{12}}{2}} c_{1}^{\dagger} c_{1}-e^{\frac{\theta_{12}}{2}} c_{2}^{\dagger} c_{2}+c_{1}^{\dagger} c_{2}-c_{1} c_{2}^{\dagger} \\
\left\{\begin{array}{l}
c_{1}=\cos \alpha \eta_{1}-\sin \alpha \eta_{2} \\
c_{2}=\sin \alpha \eta_{1}+\cos \alpha \eta_{2} \\
\cot 2 \alpha=\sinh \frac{\theta_{12}}{2} \in \mathbb{R}
\end{array}\right.
\end{gathered}
$$

FF: Mixed flux

In the massless RR-NSNS flux case one can acquire the transformations

$$
t_{2}^{\mathrm{RR}-\mathrm{NS}}=\mathfrak{a}+\mathfrak{b} \mathbb{N}_{1}+(\mathfrak{b}-2) \mathbb{N}_{2}+\mathfrak{c} \mathbb{N}_{1} \mathbb{N}_{2}
$$

with

$$
\begin{aligned}
\mathfrak{a} & =\frac{e^{-\frac{1}{2}\left(2 \theta_{0}+\theta_{1}+\theta_{2}\right)}\left(e^{2 i \frac{\pi}{k}+2 \theta_{0}}-e^{\theta_{1}+\theta_{2}}\right)}{e^{2 i \frac{\pi}{k}}-1} \\
\mathfrak{b} & =\frac{1+e^{i \frac{\pi}{k}}-e^{i \pi \frac{\pi}{k}+\theta_{0}-\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}}-e^{\frac{1}{2}\left(-2 \theta_{0}+\theta_{1}+\theta_{2}\right)}}{1+e^{i \frac{\pi}{k}}} \\
\mathfrak{c} & =2 i \sinh \left(\theta_{0}-\frac{\theta_{1}}{2}-\frac{\theta_{2}}{2}\right) \tan \frac{\pi}{2 k}
\end{aligned}
$$

FF: Massive $A d S_{3}$

$$
\begin{aligned}
R_{\mathrm{m} A d S_{3}} & =\mathfrak{A} E_{11} \otimes E_{11}+\mathfrak{B} E_{11} \otimes E_{22}+\mathfrak{C} E_{21} \otimes E_{12} \\
& -\mathfrak{F} E_{22} \otimes E_{22}+\mathfrak{G} E_{22} \otimes E_{11}-\mathfrak{H} E_{12} \otimes E_{21},
\end{aligned}
$$

it can be established that the R-matrix functions satisfy

$$
\begin{equation*}
\mathfrak{A} \mathfrak{F}+\mathfrak{B G}=\mathfrak{C}^{2} \quad \mathfrak{C}=\mathfrak{H} \tag{2}
\end{equation*}
$$

which can be demonstrated to generate FF condition for the massive case. In the FF reduced form it appears analogous to massless case, albeit distinct α-parametrisation

$$
\tan 2 \alpha=\frac{2 \mathfrak{H}}{\mathfrak{G}-\mathfrak{B}}=-2\left(\frac{x_{p}^{-}}{x_{p}^{+}} \frac{x_{q}^{+}}{x_{q}^{-}}\right)^{\frac{1}{4}} \frac{\sqrt{x_{p}^{-}-x_{p}^{+}} \sqrt{x_{q}^{-}-x_{q}^{+}}}{\sqrt{\frac{x_{p}^{-}}{x_{p}^{+}}}\left(x_{p}^{+}-x_{q}^{+}\right)-\sqrt{\frac{x_{q}^{+}}{x_{q}^{-}}}\left(x_{p}^{-}-x_{q}^{-}\right)}
$$

This parametrisation takes finite non-trivial value in the BMN limit (\mathbb{R} in the physical neighbourhood).

Braiding properties constitute an important operator integrability characteristic and follow from the braiding unitarity constraint

Braiding unitarity

$$
R^{\mathcal{X}} P \bar{R}^{\overline{\mathcal{X}}} P=\mathfrak{B}^{\mathcal{X}} \mathbb{1}
$$

where $R \equiv R(u, v), \mathfrak{B} \equiv \mathfrak{B}(u, v)$, the chiral sector \mathcal{X} and bar implies swap of spectral parameters and chiralities (only mixed sectors affected).

$$
\begin{aligned}
& \mathfrak{B}^{\mathrm{LL}}=\frac{h_{2}^{\mathrm{L}}(u)-h_{1}^{\mathrm{L}}(v)}{h_{2}^{\mathrm{L}}(u)-h_{1}^{\mathrm{L}}(u)} \frac{h_{2}^{\mathrm{L}}(v)-h_{1}^{\mathrm{L}}(u)}{h_{2}^{\mathrm{L}}(v)-h_{1}^{\mathrm{L}}(v)} \sigma^{\mathrm{LL}}(u, v) \sigma^{\mathrm{LL}}(v, u) \\
& \mathfrak{B}^{\mathrm{RR}}=\frac{h_{2}^{\mathrm{R}}(u)-h_{1}^{\mathrm{R}}(v)}{h_{2}^{\mathrm{R}}(u)-h_{1}^{\mathrm{R}}(u)} \frac{h_{2}^{\mathrm{R}}(v)-h_{1}^{\mathrm{R}}(u)}{h_{2}^{\mathrm{R}}(v)-h_{1}^{\mathrm{R}}(v)} \sigma^{\mathrm{RR}}(u, v) \sigma^{\mathrm{RR}}(v, u) \\
& \mathfrak{B}^{\mathrm{LR}}=\frac{1+h_{2}^{\mathrm{L}}(u) h_{2}^{\mathrm{R}}(v)}{1+h_{1}^{\mathrm{L}}(u) h_{2}^{\mathrm{R}}(v)} \frac{1+h_{1}^{\mathrm{R}}(v) h_{1}^{\mathrm{L}}(u)}{1+h_{1}^{\mathrm{R}}(v) h_{2}^{\mathrm{L}}(u)} \sigma^{\mathrm{LR}}(u, v) \sigma^{\mathrm{RL}}(v, u) \\
& \mathfrak{B}^{\mathrm{RL}}=\frac{1+h_{2}^{\mathrm{L}}(v) h_{2}^{\mathrm{R}}(u)}{1+h_{1}^{\mathrm{L}}(v) h_{2}^{\mathrm{R}}(u)} \frac{1+h_{1}^{\mathrm{R}}(v) h_{1}^{\mathrm{L}}(u)}{1+h_{1}^{\mathrm{R}}(u) h_{2}^{\mathrm{L}}(v)} \sigma^{\mathrm{RL}}(u, v) \sigma^{\mathrm{LR}}(v, u)
\end{aligned}
$$

For the full R embedding

$$
R(u, v) P R(v, u) P=B(u, v) \mathbb{1} \quad \text { iff } \quad \mathfrak{B}^{\{\mathrm{LL}, \mathrm{RR}, \mathrm{LR}, \mathrm{RL}\}}=B
$$

Crossing symmetry: 6vB

- Generically individual blocks obey crossing symmetry and braiding unitarity. It is important to resolve if full scattering operator does.
- The crossing symmetry works for $\operatorname{AdS}_{\{2,3\}}$ bosofermionic R for generic k, although conjugation operator of $A d S_{2}$ require s further analysis.

The $6 \mathrm{vB} A d S_{3}$ deformation R-matrix satisfies crossing through

$$
\mathbb{C}_{i} R\left(u+\Delta_{\omega, 1}, v+\Delta_{\omega, 2}\right)^{t_{i}} \mathbb{C}_{i}^{-1}=R(u, v)^{-1} \quad\left\{\begin{array}{l}
i=1, \quad \Delta_{\omega, 1}=\omega, \Delta_{\omega, 2}=0 \\
i=2, \quad \Delta_{\omega, 1}=0, \Delta_{\omega, 2}=-\omega
\end{array}\right.
$$

$$
\mathbb{C}_{A d S_{3}}^{6 v B}=\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i \\
1 & 0 & 0 & 0 \\
0 & i & 0 & 0
\end{array}\right)
$$

where by i we identify the corresponding vector space, t_{i} are transpositions in space i and ω is a crossing parameter.

6vB Crossing constraining

The above appears to hold under

- Constraint on $h_{i}^{\mathrm{L} / \mathrm{R}}(u \pm \omega)$ with $i=1,2$

$$
\begin{equation*}
h_{i}^{\mathrm{R}}(u \pm \omega)=-\frac{1}{h_{i}^{\mathrm{L}}(u)}, \quad \quad h_{i}^{\mathrm{L}}(u \pm \omega)=-\frac{1}{h_{i}^{\mathrm{R}}(u)} \tag{3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
h_{i}^{\mathrm{x}}(u)=h_{i}^{\mathrm{x}}(u \pm 2 \omega) \tag{4}
\end{equation*}
$$

- Constraint on \mathfrak{X} and \mathfrak{Y}

$$
\begin{array}{ll}
\mathfrak{X}^{\mathrm{x}_{1}}(u \pm 2 \omega)=-\mathfrak{X}^{\mathrm{x}_{1}}(u) & \mathfrak{X}^{\mathrm{R}}(u)=\mathfrak{X}^{\mathrm{L}}(u+\omega) \\
\mathfrak{Y}^{\mathrm{x}_{1}}(u \pm 2 \omega)=-\mathfrak{Y}^{\mathrm{x}_{1}}(u) & \mathfrak{Y}^{\mathrm{R}}(u)=\mathfrak{Y}^{\mathrm{L}}(u+\omega) \tag{5}
\end{array}
$$

6vB Crossing constraining

- Constraining the scalar σ-factors

$$
\begin{aligned}
& \sigma^{\mathrm{x}_{2} \mathrm{x}_{1}}(u, v-\omega)=\sigma^{\mathrm{x}_{1} \mathrm{x}_{2}}(u+\omega, v) \\
& \sigma^{\mathrm{x}_{1} \mathrm{x}_{1}}(u, v-\omega)=-h_{2}^{\mathrm{x}_{1}}(u) h_{2}^{\mathrm{x}_{2}}(v) \sigma^{\mathrm{x}_{2} \mathrm{x}_{2}}(u+\omega, v) \\
& \sigma^{\mathrm{x}_{1} \mathrm{x}_{2}}(u+\omega, v) \sigma^{\mathrm{x}_{2} \mathrm{x}_{2}}(u, v)=\frac{h_{2}^{\mathrm{x}_{2}}(u)-h_{1}^{\mathrm{x}_{2}}(u)}{h_{2}^{\mathrm{x}_{2}}(v)-h_{1}^{\mathrm{x}_{2}}(u)} \\
& \sigma^{\mathrm{x}_{1} \mathrm{x}_{1}}(u+\omega, v) \sigma^{\mathrm{x}_{2} \mathrm{x}_{1}}(u, v)= \\
& \frac{h_{2}^{\mathrm{x}_{2}}(u)-h_{1}^{\mathrm{x}_{2}}(u)}{h_{2}^{\mathrm{X}_{2}}(u)} \frac{1+h_{1}^{\mathrm{x}_{1}}(v) h_{2}^{\mathrm{x}_{2}}(u)}{\left(1+h_{1}^{\mathrm{x}_{2}}(u) h_{1}^{\mathrm{x}_{1}}(v)\right)\left(1+h_{2}^{\mathrm{x}_{2}}(u) h_{2}^{\mathrm{x}_{1}}(v)\right)}
\end{aligned}
$$

where $\mathrm{x}_{k}=\{\mathrm{L}, \mathrm{R}\}$ denotes appropriate chirality with $k=1,2$ and $\mathrm{x}_{1} \neq \mathrm{x}_{2}$.

Crossing symmetry: 8vB

In the $8 \mathrm{vB} A d S_{2}$ case one derives
$\mathbb{C}_{i} R\left(u+\Delta_{\omega, 1}, v+\Delta_{\omega, 2}\right)^{s t_{i}} \mathbb{C}_{i}^{-1}=R(u, v)^{-1} \quad \begin{cases}i=1, & \Delta_{\omega, 1}=\omega, \Delta_{\omega, 2}=0 \\ i=2, & \Delta_{\omega, 1}=0, \Delta_{\omega, 2}=-\omega\end{cases}$
since the R-matrix is in the bosofermionic form the super-transposition applies in the i-space and conjugation operator is obtained

$$
\mathbb{C}_{A d S_{2}}^{8 v B}=\left(\begin{array}{cc}
0 & 1 \\
-i & 0
\end{array}\right)
$$

Despite that it is a deformation of the $A d S_{2}$ model, the conjugation operator is different from the one studied before (mapping to anti-particles). For the present case it is of super-type (boson \leftrightarrow fermion).

Crossing constraining: 8vB

The 8 vB bosofermion R-matrix internal functions must satisfy

$$
\begin{array}{ll}
\eta(u+\omega)=-\eta(u)+2 \pi n & \mathcal{F}(u+\omega)=\mathcal{F}(u)+2 n K \\
\eta(u-\omega)=-\eta(u)+2 \pi m & \mathcal{F}(u-\omega)=\mathcal{F}(u)+2 m K
\end{array}
$$

where $m, n \in \mathbb{Z}$ and the 1st kind elliptic integral $K\left(k^{2}\right)$. For the dressing factors one obtains
$\sigma(u+\omega, v) \sigma(u, v)=\sigma(u, v-\omega) \sigma(u, v)=i\left[\left(\mathrm{sn} \Sigma \cos \eta_{-}\right)^{2}-\left(\frac{\mathrm{cn}}{\mathrm{dn}} \Sigma \sin \eta_{-}\right)^{2}-1\right]^{-1}$
For the $A d S_{2}$ deformation the boson-boson R-matrix does satisfy crossing symmetry $\forall k \backslash\{k \rightarrow 1\}$, with conditionals of the form
along with

$$
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

$$
\begin{array}{ll}
\eta(u+\omega)=-\eta(u)+\pi n & \mathcal{F}(u+\omega)=\mathcal{F}(u)+n K \\
\eta(u-\omega)=-\eta(u)-\pi m & \mathcal{F}(u-\omega)=\mathcal{F}(u)+m K
\end{array}
$$

where m, n hold to be odd.

Conclusions

- We have constructed a method based on automorphic symmetries, which appeared universal for many classes of integrable systems on the lattice, e.g. regardless dimension, symmetry, spectral dependence and other.
- We proposed generating automorphsm for non-difference form models arising in $A d S_{n}$ integrable backgrounds.
- We developed \boldsymbol{R}-matrix construction approach for string type setups and identified a set of invariant integrable transformations.
- It was shown that string type class B exhibits free-fermion, braiding-unitarity, conjugation and other properties.
- We have identified the properties and structure of the found $\operatorname{AdS} S_{\{2,3\}}$ deformed models as their $\mathbf{6 v B} / \mathbf{8 v B}$ realisation.

Further directions

- Wrapping formalism for $\operatorname{AdS}_{3} \times S^{3} \times T^{4} R R$ and GSE derivation (deformed Lüscher formulation) [Frolov, AP to appear soon]
- To develop Generalised Algebraic Bethe Ansatz [Slavnov, Zabrodin, Zotov '20] with associated graded criterion (supersymmetric selection) for $A d S_{2}$ and its deformation (that also can be used to construct deformed algebra).
- Notion of generalised flux and control parameter in non-difference vertex models? Connection to RR-NSNS case?
- $\mathfrak{s l}_{2}$ sector provides other deformations: Do they relate to ADHR in a limit, other models? Is there interpretation in terms of inhomogeneous spin chains as of [Dedushenko, Gaiotto '20]?
- Quantum algebras and \mathcal{Y}_{n} ? Is there quantum cohomological classification? Belavin-Drinfeld classification?
- $A d S_{5}$ sector remains under consideration, but $A d S_{5}$ restricted ansatz might not provide more that deformation of the Hubbard chain.
- Can one consider full $\mathcal{P} \mathcal{T}$-invariant model classification and resolution?
- Are there Bethe Ansätze that would solve Generalised Hubbard type models or if Quantum Spectral Curve can be devloped for such models?
- Can this tell us more about generalised multi-layer symmetries in $A d S_{5}$ (as of [Mitev, Staudacher, Tsuboi '12], [Shiroishi, Wadati '95])? Should one consider generic ansatz based on Korepanov construction?
- Present 6vB does not admit 3-parametric deformation by appropriate spectral restrictions. However with procedure defined one can address construction of the scattering operator (not known even at algebraic level)? Relate it to Lukyanov 4-parametric NLSM? Limits, reductions in/to harmonic map problem and its symmetries?
- There also should be a possibility to restrict (spectrally) 6 vB and 8 vB class in order to develop full underlying deformed superalgebra, including RTT or Quantum Inverse Scattering Scattering.

